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Feed-forward networks composed by neurons with activation 
functions of different parity 
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Departamento de Fisica (TANDAR), C o m i s i h  Nacional de Energia Atbmica, AV 
Libertador 8250, 1429 Buenos Aires, Argentina 

Received 12 February 1990 

Abstract. We study feed-forward networks of formal neurons having even activation 
functions. We show that networks of this kind have different computational properties 
than the ones with neurons having odd processing functions. We show that networks 
containing mixtures of this two types of neurons have richer representability properties. 
We extend our results to cases of discrete processing. These properties have been checked 
in numerical simulations performed in small enough systems to allow for an explicit 
enumeration of all synaptic matrices and Boolean functions. 

1. Introduction 

In biological systems, each neuron produces a train of pulses on its outgoing axon 
that depends upon the polarization voltage established in the membrane of the soma. 
The maximum value of the frequency of emission of such pulses is limited by the 
refractory period re ,  that is the minimum time interval allowed between two successive 
pulses. This frequency is related to the total intensity of the stimulus that the neuron 
receives from all the others. Such a relationship is represented by an activationfunction 
that is assumed to be embodied in each cell. Typically this function is nonlinear, 
bisaturating and bounded between the values 0 and 1 1 ~ ~ .  

One model approaches this biological situation by introducing formal neurons that 
are bistable devices that switch from one state to the other depending on the sign of 
the total stimulus that is produced by all the neurons that are connected to it [8]. A 
second approach that is closer to biological systems assumes that the state of each 
neuron is represented by the time average of the emission frequencies of action 
potentials produced on its outgoing axon. The corresponding activation function is 
usually considered as a continuous odd function of the difference between the intensity 
of the total stimulus and an internal firing threshold of the neuron. 

Large sets of formal neurons may be assumed to be organized as feed-forward 
networks with one or more layers of neurons. These are adaptable systems that can 
learn to represent a given Boolean function from a partial knowledge of it 
[ 1,7,9,11,12]. The learning procedure amounts to a change of the synaptic connections 
between the neurons and the firing thresholds following a prescribed algorithm. 

In a preceding paper [3] we have studied special types of feed-forward networks, 
namely those composed by neurons having all the same activation function and the 
same firing threshold. We showed that this function determines to a large extent the 
representability properties of the whole system. In fact, if it is assumed to be odd and 
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all the firing thresholds are set equal to zero, a rather limited class of Boolean functions 
may be represented. In this paper we deal with networks composed by neurons having 
other types of activation functions with emphasis for the case in which this is even. 
Neurons of this type have a firing regime in which, for the case of graded response, 
the maximum output signal is produced only for zero stimulus and the output signal 
gradually decreases for larger values of it regardless of its excitatory or inhibitory 
nature. Although this regime is not close to biological evidence the subject deserves 
attention since networks built with this type of neurons have radically different computa- 
tional properties. In the present paper we investigate this point together with the 
properties of networks in which both kind of neurons are present. 

2. Description of the network 

In this section we briefly describe the structure of the networks that we are going to 
consider, following closely the notation of reference [3]. The nets process Ni, external 
binary inputs to produce No,, external binary outputs. These are represented by the 
vectors: 

with E, and S, E (0, I}. There are Ne = 2". different binary input vectors E[ ' ] ,  (OS j S 

Ne-l).  SLJ1 is the output vector produced when the network is fed with E[-'] .  The 
network represents a particular Boolean function F, out of NBool = 2 N o u i N e .  The truth 
table of F can be built with the arrays: 

The network is assumed to have N formal neurons distributed in L layers, with n, 
neurons in the vth layer. We consider these neurons as processing elements with no 
limits imposed in their fan-in and in their fan-out. The ith neuron of the Ath layer is 
assumed to produce an output signal V: that is a nonlinear, bounded function g :  of 
the difference between the sum U: of all the weighted input signals that the neuron 
receives and its threshold 6 : :  

v : = g : ( u : - e : )  (4) 

NI" A - l  fl" 

U? = J i 0 4 +  1 J;''VJ t f A  = 2 , ,  . . , L. 
J - 1  V = l  ] = I  

In principle each of the neurons of the system can embody different functions g : .  
The models mostly studied in the literature assume however that all neurons of a given 
system have the same g;" (homogeneous networks) and that this is an odd function of 
its argument. The reason for these assumptions lies principally on the biological 
experience that finds no essential difference among the elementary constituents of the 
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central nervous system. In the present paper we chiefly consider cases in which gt is 
odd or even: 

(7) 

(8)  

g;(x) = g\h"l(x) = -gjh"l(-x) 

g; (x) = g';'( x) = g$]( -x). 

Although in general g\y1 and g\il may involve a different bias for each neuron we 
consider this to be zero for all the elements of the system (0: = 0, Vi ,  A ) .  

The external input signals Ei are transformed into the afferent currents Ii and fed 
into the neurons of the system as indicated in ( 5 )  and (6). A convention must be chosen 
to relate Ei with Ii. In order to take advantage of the whole dynamic range of the 
activation functions we consider: 

(9) I ,  = ve ( E, ) = 2 Ej - 1 . 
The set of all the afferent currents 4 corresponds to a 0th layer. 

The latin subindices i, j of the synaptic efficacies J i "  in ( 5 )  and (6) label, respectively, 
the neurons receiving and producing the signal. The two greek indices A, v number 
the layers that respectively contain those neurons. The neurons that belong to a given 
layer can only feed signals to any neuron of the subsequent ones. The synaptic matrix 
J is therefore organized in an L x  L block form, with each block containing the 
connections between two layers, and with blocks of vanishing matrix elements above 
the diagonal. The matrix J has L sets of columns and L sets of rows. The vth set of 
columns corresponds to signals coming from the ( v  - 1)th layer ( v  = 1, .  . . , L ) ,  and 
the Ath set of rows corresponds to neurons belonging to the Ath layer ( A  = 1,2, .  . . , L ) .  
We assume that the matrix elements of the non-zero blocks of J can have discrete and 
bounded positive or negative values as well as zero corresponding respectively to 
excitatory or inhibitory synaptic connections and to non-connected neurons. 

Each layer of neurons may process not only the external input signals but also the 
output signals generated by neurons of any of the previous layers. We refer to this 
architecture as fully connected networks. In a more restricted case each layer can only 
feed its output signals to the subsequent one. We refer to this architecture as cascade 
networks. 

For graded response neurons the binary values of the external signals S are obtained 
by filtering the outputs produced by the last layer of neurons. We consider two possible 
conventions for this filtering: 

3. Representability properties 

The networks such as the ones we are considering are adaptive systems that can be 
trained to reproduce a given Boolean function by adjusting the synaptic matrix. 
However, if only odd activation functions are considered not any function can be 
represented by the network. To check this it is enough to compare the outputs that 
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can be obtained by feeding the same input to two networks of the same architecture 
but having synaptic matrices J and J’ related to each other by: 

Vi, j ,  A 
V i , j , v > O , A > v .  

It can be proved [3] that, if the processing function embodied in each neuron is 
odd and all the>ring thresholds are equal to zero, then each component of the output 
vectors S and S must fulfil: 

si A si = 0 for cps = 9;, V i  (13) 

or: 

si v si = 1 for cps = cpz, V i  

where A and v denote the Boolean operators AND and OR, respectively. If (13) and 
(14) are not verified it is not possible to find a synaptic matrix J (and j )  allowing the 
network to represent the corresponding function F (and F). The prescriptions (13) 
and (14) are necessary but not sufficient conditions for the representability of a given 
Boolean function. 

The XOR cannot fulfil (13) or (14) and therefore cannot be represented by feed- 
forward networks such as the ones we are considering. This conclusion does not depend 
upon the number of layers or the number of neurons per layer in the network. 

Within the assumption that the biases are kept all equal to zero, the limitations 
imposed by (13) and (14) depend critically upon the fact that the activation function 
is odd. We next study two cases in which this condition is relaxed, giving rise to 
networks with different representability properties. 

3.1. Networks with discrete response neurons 

Within the present framework we regard the processing of a discrete response neuron 
as the combination of a continuous internal activation function such as ( 7 )  or (8) with 
an output filtering. We denote these combinations as g$+], g!;-], g\,0+] and g$-] (see 
figure 1). 

Let us first consider the case of a single neuron with two binary inputs E ,  and E2 
and synaptic efficacies Jt,” ( j  = 1,2) that can only take the values +1, -1 and 0. It is 
easy to check that for g\,0+] and g:,O-] each of the nine possible combinations of the 
pairs (.It:, J : : )  is associated with a different Boolean function. The complete list is 
given in table 1 (see also (23) and (24) for how we denote each function). 

The Boolean function F, in table 1 corresponds to the NAND operation between 
the inputs E l  and EZ. It is well known that using elementary logic reduction formulae 
any Boolean function of two inputs can be expressed in terms of NAND gates. It 
therefore follows that any F can be represented by a feed-foward network composed 
by discrete response neurons?. 

As shown in table 1, g$‘-] and gj,”’] are enough to represent fourteen of the sixteen 
Boolean functions of two inputs with only one neuron. The only missing functions are 
the XOR ( F 6 )  and its logical negation (F9). It can be checked that this situation does 
not change if one allows J F  to take more values. 

t hote  that the universal Boolean representability achieved with discrete response neutrons is not in 
contradiction with (13) and (14) since g$“] and g\:-] are not odd. 
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Figure 1. Discrete activation functions. ( a )  &-](U), ( b )  g["'I(u),  ( c )  g [ ' - ] ( u )  and ( d )  
g[e+l(  U). 

Table 1. Boolean functions represented by a single neuron having two inputs and different 
discrete activation functions g. The values J:," = i1 are indicated only by the sign. The 
functions are denoted following the convention of (23)  and (24). 

The XOR function can be represented without a drastic increase? in the number 
of neurons if we introduce a third type of neuron with an even internal activation 
function g:;'] (or g$-]). We can see that, in this case, the filtering does not introduce 
an additional variety. With the conventions chosen hitherto these neurons can represent 
the functions F6 and F9 (see table 1). Therefore a network consisting of a single neuron 
of at most three different types of activation functions (g;,', gj,O-] and gf;']), can 
represent all the sixteen Boolean functions of two inputs. 

The set of the inverted activation functions {-g!,O+], -g$--], -g\;+]} are also an 
equally acceptable set for this complete representation. 

By inspection of table 1 it is easy to check that any further constraint on the possible 
values of the synaptic matrix elements (such as only considering k1 or 0, 1) prevents 
to represent the complete set of Boolean functions. 

t Note that to represent F6 five N A N D  neurons distributed in three layers are needed. 
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3.2. Cascade architectures of even neurons 

We now turn to the case of cascade networks composed by neurons having even 
continuous activation functions g$] .  The corresponding synaptic matrix fulfils J;" = 0 
if A # v +  1. The filtering is applied only to the outputs of the last layer of neurons. 

We again consider, as in the beginning of this section, two networks with synaptic 
matrices related to each other by (12) and fed with the same input vector. We obtain 

hence 

and therefore 

p = v? Vi ,  A. (17) 

This is enough to prove that all components of the output vectors S and s must fulfil 
the condition: 

si = si V i  (18) 

no matter the filtering function that has been chosen for the network. 
The property (18), as opposed to (13) and (14), means that cascade networks of 

identical 'even neurons' can only represent functions that are invariant under the 
change of ones and zeros in the input signals. The XOR and its logical inverted are 
precisely functions of this type. 

As long as we only consider cascade architectures of homogeneous networks, the 
use of odd or even neurons do not exhaust the whole space 9 of Boolean functions. 
The fractions of 8 that fulfil respectively (13), (14) and (18) are: 

- 

2 .  - (f)? (19) 

(20) ,[el = ( t )?  

7 = No,, 2 Nln- ' .  

with 

(21) 

These two sets intersect each other with the two functions that have as output all ones 
and all zeros. Therefore, the fraction of 8 that cannot be represented with either of 
the preceding type of nets tends to 1 for 77 +CO. 

Mixed networks in which odd and even neurons coexist can represent some Boolean 
functions that are impossible to obtain with homogenous ones. For instance, if we 
take the case of a single layer with two neurons, fed with two external signals, it is 
simple to check that the function whose output array is 

cannot be represented if the activation functions of the two neurons are of the same 
kind ( & I  or & I ) ,  but it may be obtained using an even neuron for S ,  and an odd 
neuron for S 2 .  
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In the next section we present some numerical simulations to explore the representa- 
bility properties of networks composed by even neurons in which is relaxed the 
restriction of having a cascade architecture. We also consider mixed networks in which 
odd and even neurons coexist. 

4. Numerical simulations 

In the present section we perform numerical simulations using networks that have few 
enough elements to allow for an exhaustive enumeration of all possible synaptic 
matrices and functions. We only consider Ni, = No,, = 2. We thus have 256 possible 
functions F. The space 9 of all the synaptic matrices has been limited by requiring 
that the matrix elements J t "  can only take the values -1, 0 or +l .  

The output arrays IS) that denote any of the 256 possible Boolean functions Fk are 
written as: 

where 

and 
8 

k =  2'-'bi. 
i = l  

These networks have symmetries under four possible elementary transformations 
(see the appendix for a brief review of the symmetry properties of feed-forward neural 
networks): (i)  the permutation of the two external inputs, (ii) the permutation of the 
two output signals and (iii) the interchange of ones and zeros in each of the incoming 
signals. 

These transformations are the generators of a finite, non-Abelian group Gs of 
sixteen transformations Ti, ( i  = 1 , 2 , .  . . , 16). It is therefore possible to group the 256 
elements of the space 9 into 34 different 'families' or symmetry classes of at most 
16 elements each. When some of these symmetries are broken the number of functions 
in each class diminishes and the total number of classes becomes larger. 

The existence of these symmetries allows us to perform a complete study of the 
space 9 by only concentrating on a few special cases. This also holds for the learning 
curves I-I(")(F) that we define as the average probability to represent correctly one 
given function F for all the Ne possible input values, provided it is properly reproduced 
for only n input values: 
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In ( 2 5 )  9 ( F )  is the set of all synaptic matrices that represent the Boolean function F 
and A ' 1 ~ ' 2 ~ - ~ j n (  F )  is the set of all synaptic matrices that represent a Boolean function 
that coincides with F for the inputs E['*] of the training set ( O s j ,  6 N e -  1, 1 k n ) .  
In ( 2 5 )  H [ 8 ]  denotes the number of elements of the set 8 c 9. An average is performed 
in ( 2 5 )  over all possible training sets of the same size to obtain a probability that 
depends only upon the number of inputs and not upon a particular composition of 
the training set. II("'( F )  is usually called the probability of generalization and the plot 
of II'"'( F) against the amount of training n is known as the learning curve of F [ 2 , 3 ] .  

We have considered neurons having the following internal processing functions: 
( a )  discrete: 

( b )  graded: 

g\,O1 = tanh( U?) ,  ( 2 8 )  
gF,el = 2 e - ( 4 ) z / 2  - 1. ( 2 9 )  

In all the cases we use the filtering 9;. 
We describe first the simulations performed with graded neurons. We denote 

R y , , n , s . . . , n  the fully connected architecture of the network and l ? y 1 9 " 2 9 - 9 n ~  the cascade 
one. The subindex i is defined by: 

N 

where p j  = 1 for even and pj = 0 for odd activation functions, respectively. The neurons 
are numbered beginning with the first layer. For example, the fully connected architec- 
ture of the network composed by two odd neurons in a first layer and two even neurons 
in a second and last layer is denoted by R:?. 

Each architecture is simulated with all possible synaptic patterns to obtain the 
numbers H [ 9 ( F ) ] .  The complete list is given in tables 2 and 3 .  - 2,2,2 The cascade architectures E:, l?;f and R63 are homogeneous networks composed 
only by neurons having even activation functions. As expected they always fulfil the 

Table 2. Number of Boolean functions ( N , )  and classes ( N , )  that are represented by the 
architectures R f .  Both graded and discrete activation functions are considered. The architec- 
tures of the last line of the table have neurons of different kinds. In that case, the symmetry 
associated with Ts(Pi2) is broken thus increasing the total number of classes from 
34 to 5 5 .  

Graded Discrete 

i Nc N ,  N ,  Ni 

0 11 81 11 8 
3 4 9 7 16 

1 , 2  7 21 10 36 
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Table 3. Number of Boolean functions ( N , )  and classes ( N , )  that are represented by 
various architectures. Both graded and discrete activation functions are considered. The 
architectures of the last three rows of the table have neurons of different kinds in the last 
layer. 

0 
132 
3 
12 
13,14 
15 

4 , 8  
7 , l l  
5 , 6 , 9 ,  10 

11 81 11 81 29 218 34 
29 212 33 252 28 188 34 

7 16 34 256 7 16 34 
6 12 7 16 18 88 34 
7 33 34 256 18 88 34 
6 12 34 256 I 16 31 

9 32 10 36 44 206 55 
10 16 55 256 10 16 55 
24 112 55 256 40 152 55 

256 
256 
256 
256 
256 
224 

256 
256 
256 

prescription (18) (see table 4). The learning curves are shown in figures 2 ( a ) ,  ( b )  and 
( c ) .  The prescription (18) is a necessary but not a sufficient condition. In table 4 we 
see that not all the sixteen functions (belonging to seven symmetry classes) that fulfil 
(18) are represented by the architectures that we have considered. 

A remarkable change occurs for networks composed only by even neurons when 
the restriction of having a cascade connection pattern is relaxed. The sixth row of 
table 3 shows that all the 256 possible Boolean functions are represented by the R:$ 
architecture. Figure 2( d )  shows the corresponding learning curves. 

The fully connected architectures Rfv2 combining neural processing of different 
parities show, in some cases, a striking richness. As can be seen in table 3, except for 
the cases R$’, R:.’, R:.’, R$2, R i s2  and R : f ,  any Boolean function can be represented 
by the same architecture. It is worth remarking that this effect occurs when the even 
neural processing is used in the first layer, as in R:,’, R:*’ and R : f  (notice that in RiV2 
is only used in that layer). 

Inhomogeneous architectures allow for neurons of different parity in the last layer. 
In these cases we find a change in the number of families as a consequence of the 
breaking of the permutational symmetry of the two outputs (see the appendix). When 
this occurs the number of symmetry classes grows from 34 to 55 and the maximum 

Table 4. Families of Boolean functions that may be represented by cascade networks 
composed only by even neurons and the corresponding values of H [ 2 m ] .  

a Functions FA belonging to the family a d :  d2.2 15  E;:.’ 

0 0 
20 20,40,65, 130 
60 60,195 
85 85, 170 

105 105, 150 
125 125,190,215,235 
255 255 

0 100 12 420 
0 0 0 
4 96 3 072 
0 3 50 43 470 
4 32 256 

10 304 10 496 
25 4289 383 441 
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0 1 2 3 4  
n 

0 1 2 3 4  
n 

Figure 2. Probability of generalization as a function of the amount of training n, for 
networks composed by neurons having even activation functions. ( a )  R:: at n = 1, from 
top to bottom, the curves correspond respectively to the famlies a =60,  255, 125 and 105. 
( b )  ay: at n = 0, from top to bottom, the curves correspond respectjvely to the famlies 
a =255, ( 8 5 ~  125), ( O t 6 0 )  and 105. At n = 1, from top to bottom, the curves correspond 
respectively to the families (Y = 255 ,  ( 8 5  = 0), (60;. 125) and 105. ( c )  r?,?$’: at n = 0, from 
top to bottom, the curves correspond respectively to the families a = 2 5 5 ,  85, 0, 125, 60 
and 105. At n = 1, from top to bottom, the curves correspond respectively to the families 
a = 2 5 5 ,  ( 8 5  = O ) ,  125, 60 and 105. ( d )  R:;: all the 34 symmetry classes are represented. 

number of elements of each class becomes 8 instead of 16. Within each of the new, 
smaller families it still holds that all the Boolean functions have the same learning 
curves. This feature is illustrated in figure 3 ( a )  in which are shown Ilk:) and ll‘,;b for 
the homogeneous and inhomogeneous fully connected architectures R:*2 and R:92. The 
same learning curves are represented in figure 3(b )  for E:,’ and E;,’. In some cases 
one of the resulting subfamilies may not be realized as shown in figures 3(c) and ( d ) .  

In tables 2 and 3 we present also the results of the same numerical simulations for 
discrete response neurons. In this case the notation for the architectures is a natural 
extension of the one used for the graded response case. The noticeable result that 
follows from tables 2 and 3 is the systematic increase in the representability of net- 
works composed by discrete neurons as compared with similar architecture with 
graded response ones. This can be understood in terms of the discussions made in 
subsection 3.1. 

All the above described results suggest that there are general-purpose and special- 
purpose architectures. Figure 4 shows the different set of values H [ 2 ? e ]  obtained for 
the cascade architectures E;,’ and I?;$ (figures 4( a )  and ( b ) )  and for the fully connected 
cases Ri32  and R : f  (figures 4(c) and ( d ) ) .  and Riv2  should be considered as 
special-purpose networks while R:? as a general-purpose one. It is possible to provide 
a quantiative measure of the degree of specialization through the inferential entropy 
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' O m  o e  
L 1 4  

02, ! I  /' " 4 
0 1 2 3 4  

n n 

Figure3. Effect of the symmetry breaking associated to the transformation Ys( Pi'), shown 
in the splitting of the learning curve corresponding to the functions F,, and F,70 .  The 
broken (full) lines correspond to the learningcurves of a homogeneous (inhomogeneous) 
network. ( a )  R:.' !broken), R:,' {full); ( 6 )  R:*2 (broken), R:.2 (full); ( c )  R:$ (broken), 
R$2 (full) and ( d )  R: f  (broken), (full). In the last two cases F,70 cannot be represented 
by the inhomogeneous networks. 

that, for an untrained network, is defined by [4,13]: 

In (31) H [ 9 ]  stands for the total number of synaptic matrices. In table 5 we give the 
values Z ;  for the cases listed in table 4. Special-purpose architectures have lower 
entropy than the general-purpose ones. This can also be visualized comparing the 
values of S: with log, r, r being the number of representable functions (see figure 5 ) .  
This is the value that would correspond to the entropy of a system in which all the 
representable functions have equal values of H[ T( F ) ] .  

It is also possible to define an entropy associated with the grouping of functions 
into symmetry classes by a given architecture [4]. This is a natural extension of (31): 

In (32) X ( 9 )  is the set of matrices that represents any of the Boolean functions 
belonging to the class 9. ZL admits a similar interpretation than G:. Large (small) 
values of G$ correspond to architectures that have an even (dissimilar) partition of 
the space 9 with respect to the whole set of symmetry classes. The values of 5;  are 
listed in table 5 .  It can be checked that Z.",> Z: [4]. The 'general-purpose' against 
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400 

- 300 

z 
200 

100 

0 

s - 

a 
I O o o  0 U 

- x" 1 0 0 0 0 ~  

a a 

Figure 4. Historgrams of H [ Y a ]  as a function of the index CI labelling the symmetry 
classes. The plots show how the space 2 is partitioned among the various Boolean functions 
(or classes) and consequently display different degrees of specialization. ( a )  R t 2 ,  ( b )  I?:$, 
( c )  R$2 and ( d )  R:$.  

Table S. Value sof the entropies 2% and 5; for the arachitectures 
graded and discrete activation funitions are considered. 

and R f 3 2 .  Both 

i 

0 6.005 3.332 5.632 2.692 6.669 4.013 
192 6.781 4.585 7.386 4.168 6.427 4.285 
3 3.771 2.697 7.847 4.617 3.540 2.506 
12 1.795 0.362 3.750 2.403 5.246 3.570 
3, 14 2.586 1.660 6.935 4.318 5.395 3.504 
15 2.019 1.502 6.961 4.145 3.244 2.385 
4 ,8  3.970 2.290 4.692 2.299 6.239 4.481 
7 , l l  2.971 2.484 7.411 5.055 3.449 2.976 
5,6,9, 10 5.000 3.582 7.165 4.719 6.094 4.643 

7.102 3.960 
7.536 4.444 
7.551 4.586 
5.227 3.486 
5.569 3.488 
5.156 3.251 
6.179 4.105 
6.368 4.461 
6.562 4.534 

'special-purpose' concepts can thus be extended providing the location of a given 
architecture in the S> against Sk plane (see figure 6). The points displayed in figure 
6 can be grouped into, for instance, four sets according to the connection pattern 
(cascade or full) and to the activation function of the neurons (G: graded or D: 
discrete). This data can thus be summarized in the position of four centroids that 
provide an overall view of the effect of these two parameters. The values are (as usual 
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t 

0 so 100 IS0 200 250 
NB, 

Figure 5. Values of the entropy 2% against the number r of functions that the network is 
able to represent. The-dots corresponds to the values listed in table 5.9: I?:.', graded; 
#: RT.2, graded; +: RfS2,  discrete; X :  R:*,,  discrete. (1) i=O,  (2) i =  1,2,  ( 3 )  i = 3 ,  (4) 
i=12,(5)i=13,14,(6)i=15,(7)i=4,8,(8)i=7,11,(9)i=5,6,9,10.Thecontinuous 
line represents the function log, r. 

/ 

0 2 4 6 8 - 
- D  

Figure 6. Pairs of valu-es ( Z : ,  Z g )  for the architectures listed in table 5 . 9 :  I?:.', grad; 
#: Rf*2,  graded; +: Rf.,, discrete; X :  RT.', discrete. (1) i =0, (2 )  i = 1, 2, ( 3 )  i = 3, (4) 
i=12,(5) i = 1 3 ,  14, ( 6 )  i = 1 5 ,  ( 7 )  i = 4 , 8 ,  (8)  i=7,11, (9) i = 5 , 6 , 9 , 1 0 . T h e a l l o w e d  
region is above the line Z:.= and at the left of log, N ,  (with N,=34 or 55) .  The 
borders are marked with broken lines. 
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a tilde denotes cascade architectures): 

(Si,  st)^ = (2.766,4.138) 

(S;, G.",), = (4.026,6.606) 

(si, s",6= (3.846,5.381) 

(s;, Z $ ) D  = (4.151,6.412). 
(33) 

It is seen that the change from graded to discrete response provides no significant 
increase in the representability for fully connected architectures while the opposite is 
true for cascade connection patterns. 

5. Conclusions 

In the present paper we have considered networks of neurons with different activation 
functions. The type of inhomogeneity that we have considered is not entirely based in 
the biological evidence but proves to be useful for artificial intelligence devices since 
it allows for a remarkable increase in the representability properties of the system. The 
fact that such drastic change occurs when the even processing is located in the input 
layer opens a suggestive field in the search of a biological counterpart in primary 
sensory neurons (or groups of them) and in receptors cells. 

The models that we have considered can also be compared with networks built by 
Boolean gates [2,10]. The comparison can be made taking into account: ( a )  the 
richness of the representability, ( b )  the degree of complexity of the processing elements 
and (c) the possible values of the connections between two processing elements. 

The weight of the connections (analogous to the synaptic efficacies) of a network 
composed by Boolean gates that only admit two inputs, can only be zero (the gates 
are not connected) or one (the gates are connected). On the other hand there are 
sixteen possible different choices for each gate of the network. 

From the present simulations we can conclude that networks with neurons having 
graded activation functions of different parity and networks constructed with Boolean 
gates have similar performances. A naive comparison of these two kinds of networks 
suggests that most of the complications that one type has in the architecture and in 
the synaptic connection pattern, the other has it in the internal processing function of 
the elementary building blocks. A neural network has a more complicated synaptic 
pattern because each neuron may be connected with more than two input signals. In 
addition each synaptic efficacy can take in principle any real value. On the other hand 
the possible internal activation functions of the analogue devices can be limited to be 
of only two types, by choosing the same odd or even [unctions for all the neurons of 
the system. 

The results of our calculations therefore suggest that there exists some kind of 
balance between the simplicity of the neural processing and the complexity of the 
synaptic matrix. Less internal degrees of freedom in the processing element appears 
to be complemented by a more complex synaptic matrix. 

In what refers to the adaptability properties of inhomogeneous cascade architectures 
one should notice that the whole set ifs2, when jointly considered, leaves no Boolean 
functions without being represented. This implies that an adaptative learning algorithm 
may be worked out in which the search is performed within the limited set of cascade 
connectivities but allowing to change not only the synaptic efficacies but also the parity 
of the neural processing in each site of the network. This search can be performed 
with a fixed choice of the filtering devices because the representability in inhomogeneous 
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networks turns out to be independent of the output filtering. A learning protocol based 
on simulated annealing [ 6 ]  using this fact will be reported elsewhere [5]. 

The simultaneous consideration of processing elements with two kinds of graded 
activation functions (odd and even) appears as a valid and perhaps simpler alternative 
to networks with neurons having all different thresholds. 

Appendix. Symmetries and symmetry breaking 

In a previous paper [3] we have studied the symmetry properties of homogeneous 
feed-forward networks. The processing of the net can be regarded as the action of an 
operator F, (parametrized by the synaptic matrix J )  acting on the input array \ E ) :  

IS) = FJIE). (34) 

Some transformations Ye operating over / E )  can be compensated by acting simul- 
taneously on the synaptic matrix J with a transformation 9;’: 

IS)= FT;l,lFeE). (35) 

Since the output array IS) does not change, we can regard the simultaneous action of 
Ye and Y;’ as a symmetry of the network. 

Two kinds of transformations Ye have been considered in [3]: ( i )  the permutation 
of any pair of input signals Ek and E, ( k  f I) [Ye( P i k ) ] ;  (ii) the logic negation of any 
of the input signals E, [Ye( N’,)] .  The transformation Ye( P i k )  can be balanced inter- 
changing the Ith and kth columns associated with the 0th layer in the synaptic matrix 
J. Likewise, IS) does not change if the operation Ye( N.’,) is accompanied by changing 
the signs of the j th  column associated with the 0th layer of J. This last operation on 
J can actually be performed if both a and - a  are acceptable values for J;’. Allowing, 
for instance, only positive values for the synaptic efficacies would break the symmetries 
associated with the transformations Ye( N’,). 

Other transformations Ys that operate over IS) can also be compensated acting 
simultaneously on J in such a way that: 

IS) = 9sFy;ljI E ) .  (36) 

For instance, the permutation of the pair (1, k)  of output signals [ Y s ( P i k ) ]  can be 
cancelled by interchanging the Ith and kth rows associated with the Lth layer in the 
matrix J. 

The transformations Y e ( P 2 k )  and Ye(Ni) act on the input array ] E )  but Ys(Pik) 
operates on IS). To deal only with operators acting on the same space, instead of 
considering Y e ( P $ k )  and Ye(N’,) we use Y s ( P i k )  and Ys(N’,) defined by: 

Ys(P:k)is) = FJIYe(P;k)E) (37)  

Ys(N’,)IS)= F , l T e ( N ; ) a  (38) 
The transformations Fs( Pk’),, Fs( P i k )  and Ys( N’,) are generators of a finite group 

Gs of transformations that act on the space 9 of all output arrays IS). The application 
of all the transformations of the group Gs to an output array IS) generates the symmetry 
class 9(lS)) (or 9(F)) associated with it. The whole space 9 can therefore be 
partitioned into disjoint symmetry classes or families De. All the functions belonging 
to the same class are represented by the same number of synaptic matrices [3]. When 
we consider networks with mixed processing some of the above mentioned symmetries 
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may break. For example, in the case in which the last layer is composed with two 
different types of neurons the network is no longer invariant under the permutations 
of two output signals and the families 9e that are not invariant under the transformation 
Ys( P>'), split into subfamilies. This symmetry also breaks in homogeneous networks 
when the thresholds e? of the neurons of the last layer are allowed to take different 
values. 

Within the above considerations it can also be proved [3] that any two functions 
belonging to the same set ga have the same values of n ' " ' ( F ) ,  Vn. 
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